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Modelling and Simulation of the Melting Process in
Electric Arc Furnaces—Influence of Numerical
Solution Methods
Thomas Meier,�,† Vito Logar,�,† Thomas Echterhof, Igor �Skrjanc, and Herbert Pfeifer
Increasing demands on the steel market are leading to introduction of many technological
innovations regarding the electric arc furnaces (EAFs). The area with significant potential is
also advanced computer support, based on mathematical models estimating the process
values which are not continuously measured, such as chemical compositions and
temperatures of the steel, slag and gas. To achieve optimal process control using EAF
models, two crucial characteristics of the later are required, i.e. sufficient accuracy and
calculation speed, both affected by selection of the modelling approach and ordinary
differential equation (ODE) solving method. The aim of this paper is to investigate the
estimation accuracy and calculation speed of an EAF model, evaluated by three solving
methods, i.e. fixed step Euler, variable step Runge-Kutta and Backward Differentiation
Formula (BDF). The results are showing that the selection of the ODE solver has an
enormous effect on simulation outcome. All three methods proved to be appropriate to
obtain the estimated process values; however, achieving a desired level of precision leads
to significant deviations in computational speeds. Thus, when aiming for optimal model
based EAF control, proper selection of the ODE solver is as important as the modelling
approach, but too often neglected.
1. Introduction

The field of EAFmodelling has expanded greatly in the last

two decades and has become a tool, which is given

considerable attention as an EAF operation support

system. The models that have been developed can be

classified in different categories according to their com-

plexity, purpose and accuracy. They extend from the

simplest,[1] describing only the basic, necessary processes,

to more enhanced ones,[2–4] including more mechanisms

and leading to more accurate results, to the most

comprehensive configurations,[5–8] consisting of all major

phenomena in the EAF, providing the most accurate

estimations of the process values. In an EAF modelling

literature review by Turkdogan[9] it can be seen that
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dynamic models have the edge over static calculations

when it comes to their use for either process monitoring,

optimisation or control, since static models are more

focused on offline statistical studies and are usually not

implemented for online calculation purposes. When

building a dynamic process model, the dynamics of the

modelled process are usually described by ordinary

differential equations. In order to solve the ODEs numeri-

cally, which is the normal case in simulation, different

ODE solving methods were developed up to now. The

selection of proper ODE solver is one of the aspects that is

closely related to the modelling and simulation in general,

but is too often given insufficient attention.

It is known that most of the EAFs are still operated based

onoperator’s experienceandnot on the actual conditions in

the EAF (stage of melting, temperatures and compositions)

due to the nature of the process (high temperatures and

currents). Such operation of the EAF leads to sub optimal

results and consequently to lower steel yield andquality and

to higher energy and material consumptions, i.e. to higher

operational costs. In order to optimise the EAF process, a

better insight to the actual conditions in the EAF should be

presented to the operator, by either extended process

measurements or by estimation of the unmeasured process
†These authors contributed equally to this work.
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 values using complex process models. In this manner,

approximatevaluesof thecrucialprocess variables, e.g. steel

temperature and composition, are accessible to the

operator, leading to more optimal action or decision in a

given moment. In order to accurately simulate the

conditions in an EAF and to present the estimation results

to the operator in real time or perhaps even include an

optimisation procedure, two requirements have to be met,

i.e. sufficient model complexity and short enough compu-

tation time. The latter is related to all, model size, model

complexity (ordinary or partial differential equations,

algebraic equations etc.) and the ODE solving method.

Since the model size and complexity usually cannot be

changed in order to ensure sufficient accuracy, the solving

method is the crucial part of the system, which significantly

influences the computational speed.Moreover, the process’

dynamics represented by its time constants also play an

important role when solving the ODEs, as the following rule

applies: the faster dynamics, i.e. short time constants, the

smaller integration steps areneeded forproperODEsolving.

In the case of an EAF modelling, the dynamics range from

very fast, i.e. some of the chemical reactions, electrical

relations etc.; to very slow, i.e. heat transfers, melting etc.,

which represents the so called stiffness of the system, which

can also be an issue for the ODE solver. For this reason a

comprehensive study on the selection of the integration

method for EAF process simulation has been performed,

focusing on both process value estimation accuracy and

computational speed for online use of the process models

incorporated for differentpurposes, i.e. processmonitoring,

optimisation or control.[10,11] In this manner, the effects of

three different ODE solvers are presented and compared,

using a comprehensive EAF process model as a basis for

calculations and three different solving methods, i.e. fixed

step Euler, variable step Runge-Kutta and BDF meth-

ods.[12,13] The first ones are two of the most common

methods ineachcategory (fixed/variable step), and the third

method is a special solver for stiff ODEs. For the fixed step

Euler method, step sizes between 0.25 s to 0.0001 s are

investigatedand their influence tocomputational speedand

accuracy forbath temperatureprediction is compared to the

variable step Runge-Kutta method and numerical differ-

entiation formulas (NDF), hereparticularly theBDFmethod.
Figure 1. Schematic presentation of the EAF model used in this
study.
2. EAF Model

2.1. EAF Model Description

The EAF model used to perform this research presents a

comprehensive combination of all crucial processes

occurring during the EAF steel recycling. The models

were developed in accordance with fundamental physical

laws by means of first order differential equations and

were tested and validated on EAF operational measure-

ments.[5–7,10] The selected approach has its advantages and

drawbacks when compared to other possibilities (e.g. fuzzy
2 steel research int. 86 (2015) No. 9999
or neural network approaches, support vector machines

etc.); however, the possibility to use the developed models

with as many EAF designs as possible was the main aim of

the development and for this reason the models are based

on fundamental mathematical/physical approaches.[9] The

validation of the model showed high estimation accuracy

for measured average process values and satisfactory

computational speed for the needs of simulation.[6,7] The

achieved results for the endpoint steel temperature of

1958–K� 10.5Kwereclose to theaveragemeasured temper-

ature of 1961K� 11.6K. However, whether the model shall

be used as a basis for online process optimisation, its

evaluation speed needs to be increased significantly. The

model used in this study is schematically presented in

Figure 1. The presented model implements mathematical

equations of all main physical processes appearing during

the steel recycling process, i.e. thermal (including radia-

tion), chemical and mass transfer. As presented, the overall

model is designed of several modules, each representing a

set of equations describing particular physical phenomena

in the EAF (energy distribution, chemical reaction, mass

calculations, heat transfer etc.). Due to the complexity

of the modelled processes and in order to simplify the

obtained models, the EAF layout is divided into several

zones (solid steel, liquid steel, solid slag, liquid slag, gas, roof

and walls), assuming homogeneity and equal physical

characteristics of each zone. The characteristics of each sub

model are briefly explained in the following.

The heat transfer model is characterised by the

following:
1.
 1st order ODEs are used to calculate the temperatures of

the zones and are based on energy input/output

balances,
2.
 heat transfers are calculated for each zone from: arcs,

burners, chemical reactions, volatilematerial oxidation,

electrode oxidation and other zones,
3.
 heat losses are calculated due to cooling of the furnace,

off-gas extraction, steel and slag enthalpy,
� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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calculation of temperature dependent burner efficiency

and continuous transitions between the zones (geom-

etry supported).

The mass transfer model is characterised by the

following:
1.
 1st order ODEs are used to calculate the mass transfers

between the zones and are based on zone temperatures

and energy input/output balances,
2.
 elements and compounds which are used in each zone

in the calculations are:
� steel zone: Fe, C, Si, Cr, Mn,

� slag zone: FeO, SiO2, MnO, Cr2O3, CaO, MgO, Al2O3,

� gas zone: N2, O2, CO, CO2, CH4,
01
3.
 consideration of reversible dynamics (cooling and

solidification),
4.
 calculation of the mass transfers due to: melting,

charging and slag addition, oxy-fuel burners, O2

lancing, C injection and chemical reactions.

The chemical model is characterised by the following:
1.
 implementation of the main chemical reactions

appearing in the steel melting process (oxidation of

Fe, Si, C, CO, Mn, Cr; reduction of FeO, SiO2, MnO,

Cr2O3),
2.
 1st order ODEs are used to calculate the rates of change

of elements/compounds based onmolar equilibria with

reaction equilibria constants dependent on molar

composition of the zone,
3.
 calculation of chemical energy exchange due to

exothermic and endothermic reactions,
4.
 calculation of the foamy slag height, based on slag

density/viscosity/surface tension and superficial gas

velocity (CO) including slag decay,
5.
 calculation of online and endpoint steel, slag and gas

compositions and relative pressure.

In the first stage of development the presented EAF

model was implemented with the fixed step Euler method.

For further developments and the related increase in

complexity it was re-implemented in a manner that allows

the use of all MATLAB R2014a integrated ODE solving

methods.
2.2. New EAF Model Implementation and Comparability of
Results

Due to the re-implementation, several model modifica-

tions were required to ensure a robust and stable

simulation. Sudden changes through if-else conditions

were removed and replaced by continuous control

algorithms. These were realised by adding modified
5 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
hyperbolic tangent functions with a more or less steep

curve shape to switch between ‘on’ and ‘off’ resp. one and

zero. Also themode of operation had to be slightly adjusted

as well as the calculation of the melting geometry to avoid

sudden changes and to realise progresses without any

steps. All in all, these modifications lead to small

deviations in the simulation results between the old fixed

step Euler method and the new implementation, but

enables the usage of all current and future MATLAB

R2014a integrated ODE solver or a combination of them.

As a consequence, the simulation results achieved with

both implementations are not directly comparable regard-

ing the question, which solution method is the more

accurate one. Instead, the results of the Euler method

implementation with different decreasing time step sizes

are compared among themselves as well as the MATLAB

integrated ODE methods Runge-Kutta(ode45) and the

BDF(ode15s) are also compared with each other.
3. Numerical Solution Methods for ODEs

Great efforts are made to model the physical processes in

an EAF most precisely to predict important process

variables with maximum precision. As a consequence of

the relatively long simulated process time of at least 30

minutes up to more than 60 minutes for one melting

period (tap to tap), the choice of the numerical solution

method can influence the simulation results enormously,

but is sometimes not considered in detail. The literature on

solution algorithms used in EAF modelling and simulation

is sparse. Even though lots of numerical EAFmodels can be

found in literature, the focus is on the results achieved

without referring to the solution method.

In case of simple model implementations using basic

fixed step size methods, a conflict between accuracy and

computation time arises. In order to achieve fast results,

larger step sizes have to be chosen which are leading to

bigger deviations in the results. When process models are

applied for research or optimisation calculations, the

computation time is not critical and smaller time steps can

be chosen to achieve accurate results, but taking into

account numerical limitations. To avoid the conflict

between the simulation time and the accuracy, ODE

solution methods with variable time step sizes can be

applied to solve the initial value problem of the EAFmodel.

By realising the new implementation it turned out that the

described EAFmodel is a stiff system of ODEs. It means that

there are some components of the solution decay, which

are varying much more rapidly than others. Under these

circumstances, the explicit numerical methods have to take

small step sizes to obtain satisfactory results. As a result,

the Runge-Kutta calculation described below is still precise,

butwould takea longcomputationtime.As there isnounique

definition of stiffness in literature, complex ODE systems

are identified to be stiff according to their behaviour.
steel research int. 86 (2015) No. 9999 3
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 The presented EAF model consists of 52 ODEs, describing

heat andmass transfers as well as pressure change andmass

changes through chemical reactions which are described in

earlier publications.[6,7] The latter ODEs are changing quickly

to reachequilibriumwhileheat andmass transfer aremoreor

less fixed, i.e. stiff. The numerical solution methods applied

for the simulation of the EAF model are shortly described

below.Thedescriptiongivesonlyashortoverviewas thereare

more methods available to solve ODEs.
3.1. Fixed Step Size Euler Method

A simple, robust and frequently used method to solve

initial value problems is the explicit Euler method. This

method uses a self-chosen constant time increment h > 0

to calculate time following function values ynþ1 according

to the Equation 1, 2 and 3.[14]

_y ¼ f ðt; y Þ yðt0Þ ¼ y0 ð1Þ

tn ¼ t0 þ nh n ¼ 0; 1; 2; . . . ð2Þ

ynþ1 ¼ yn þ hf ðtn; ynÞ n ¼ 0; 1; 2; . . . ð3Þ

The accuracy of the method depends on the change of

f(tn,yn) and the selected time step size h, which influences

the resulting error proportional. The smaller the selected

step size, the more accurate the result but the longer the

computation time. The great advantage of the method is its

robustness and the simple programming via loop calcu-

lations and therefore it was used in the first stage of

development of the EAF model. The possibility of choosing

bigger time steps for a fast simulation to check the

plausibility and stability was accepted in contrast to the

disadvantage of long simulation time for smaller time step

sizes to reach high accuracy. In addition, the optimal time

step size for a given accuracy cannot be calculated and thus

creates a conflict of interest between accuracy and computa-

tional speed. Other Euler methods like the implicit Euler

method (also known as backward Eulermethod) ormodified

Euler method are not investigated, as these methods have

the same disadvantage of a self-chosen step size and are not

provided by MATLAB R2014a as a standard ODE solver.
3.2. Variable Step Size Runge-Kutta Method

As a commonone step solver, the explicit Runge-Kutta(4,5)

formula obtains its error through a comparison of a fourth

order with a fifth order Runge-Kutta calculation and

reduces its step size h if necessary to achieve the specified

tolerance (Dormand-Prince method).[12,14,15] The calcu-

lation rule for a fourth order Runge-Kutta method to

calculate following function values ynþ1 for step size h > 0
4 steel research int. 86 (2015) No. 9999
is described with Equation 4 to 10.

_y ¼ f ðt; yÞ yðt0Þ ¼ y0 ð4Þ

ynþ1 ¼ yn þ
h

6
ðk1 þ 2k2 þ 2k3 þ k4Þ ð5Þ

tnþ1 ¼ tn þ h ð6Þ

k1 ¼ f ðtn; ynÞ ð7Þ

k2 ¼ f ðtn þ h

2
; yn þ

1

2
k1hÞ ð8Þ

k3 ¼ f ðtn þ h

2
; yn þ

1

2
k2hÞ ð9Þ

k4 ¼ f ðtn þ h; yn þ k3hÞ ð10Þ

In MATLAB R2014a, this ODE method is called ode45 and

is recommended as the best function to apply as a first try

for most problems with medium to high accuracy. The

Runge-Kutta method is also used to solve the EAF model

from Ghobara, which is based on the EAF model from

MacRosty and Swartz.[3,16] For further investigation of

accuracy and speed of the simulation, the ode45 is used as

the reference solution for highest precision.
3.3. Variable Step Size BDF/NDF Method

When a differential problem is stiff, Runge-Kutta(ode45)

fails or is very inefficient, or when solving a differential

algebraic problem, it is recommended to use multi-step

BDF/NDF solver. This implicit solver is based on

numerical differentiation formulas, and is capable to use

backward differentiation formulas which are also known

as Gear’s method.[13] The unknown value ynþ1 is thereby

calculated through a polynomial approximation, where

the derivative of the polynomial satisfies the differential

equation in point tnþ1. The general calculation rule to

calculate following function values ynþ1 for step size h > 0

is described with Equation 11 and 12.

_y ¼ f ðt; yÞ yðt0Þ ¼ y0 ð11Þ

y
0 ðtnþ1Þ ¼ 1

h

Xk

j¼0

ajynþ1�j ¼ f ðtnþ1; ynþ1Þ ð12Þ

The coefficients aj are calculated through derivation of the

interpolation polynomial and the initial values y1 to yk-1 are

generated via single step methods. The BDF method
� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(MATLAB function ode15s) computes following process

values with a variable order k by achieving low to medium

accuracy and takes less computation time in each step for

solving stiff implicit equations than most other numerical

solution method provided by MATLAB R2014a.[17]
4. Results and Discussion

In this section, the simulation results for different solution

methods are compared in terms of accuracy and speed. In

particular, the bath temperature and the net heat flow of the

solid scrapandthe liquidmeltphaseare investigatedbyusing

the old and the new model implementation. In terms of the

bath temperature, highest accuracy is achieved when the

averagemeasuredsteelbath temperatureof1961K is reached

as the final simulation result, according to the validation

within thefirst publicationof themodel.[6,7] For thefixed step

Euler method, step sizes between 0.25 s to 0.0001s are

investigated. The limits were selected in a way that for larger

step sizes itwouldn’t bepossible toobtain any resultsdue toa

lack of stability and for smaller step sizes; the amount of data

wouldn’t longer be manageable with standard computer

capacity. For the MATLAB ODE methods, the step sizes are

calculatedby thecalculationmechanismitself.Theboundary

conditionsfor thesimulationsarethesameasdescribedinthe

first publication of themodel.[6,7] The whole melting process

of 85 t of scrap, divided into three baskets, corresponds to a

simulated process time of 2700 s. The charging of the second

and third scrapbasket takesplaceat900 sand1500sascanbe

seen in the results.
4.1. Simulation Run Times

Before discussing the results obtained, the simulation run

times are compared first. Therefore, Table 1 shows the

different durations for the investigated step sizes with the

Euler method compared to the durations of the Runge-

Kutta(ode45) and NDF/BDF(ode15s) methods. For large

time steps, the Euler method provides quick results due to
step size

[s]

Euler

method

[s]

Runge-

Kutta(ode45)

[s]

NDF/

BDF(ode15s)

[s]

0.25 5

0.1 12

0.01 113 7178 61

0.001 1133

0.0001 12143

Table 1. Simulation run times for the investigated numerical
solution methods

� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
a small number of iterations. For decreasing time step

sizes, the duration increases inversely proportional in

consequence of the increased number of calculation loops.

The investigated variable time step solvers are resulting in

completely different simulation run times.While the Runge-

Kutta(ode45) method needs around two hours to simulate

the whole process, the NDF/BDF(ode15s) needs only one

minute. As described before, this is attributable to the

stiffness of theODE system. Themechanismof Runge-Kutta

cannot increase the time step and reaches an average step

size of about 0.003 s while the ode15s calculation reaches an

average time step size of about 1.2 s for the investigated

model. The ode15s is much faster than the ode45 mecha-

nism. For further comparison, the influence of the step sizes

on the accuracy is discussed in the following sections.
4.2. Bath Temperature

Figure 2 and Figure 3 are showing the results for the bath

temperature calculation. In both figures, the bath temper-

ature starts at 1809K and temperature drops are visible

after the charging process of cold scrap. At the end of the

process, the temperature of the melt increases to reach

tapping temperature. Here, the big differences in the

results for the calculation with the Euler method and

different step sizes are obvious in Figure 2. For increasing

time step sizes, the deviations are increasing, especially for

long simulated process times. For big time steps, sudden
Figure 2. Bath temperature calculated with the Euler method.

Figure 3. Bath temperature for Runge-Kutta(ode45) and NDF/
BDF(ode15s).

steel research int. 86 (2015) No. 9999 5



Figure 4. Net heat flow to solid scrap calculated with the Euler
method.

Figure 5. Net heat flow to liquid melt calculated with the Euler
method.

www.steel-research.de

FU
LL

PA
P
ER
 changes of process variables are recognised in the

simulation with a time delay or are even disregarded.

Then smaller deviations are summing up and the

calculation error growths.

For smaller time steps, the differences between the

calculations are decreasing and the behaviour of the bath

temperature seems to be constant with a small increase at

the end of the process due to overheating. The average

measured steel bath temperature of 1961K is not reached

with the used time steps and a most suitable time step

would be between 0.001 s and 0.01 s. For the inaccuracy

with small time steps it is assumed that the performance is

attributable to numerical inconsistencies within the single

loop implementation. First, the temperature change rate

and a temporarily new bath temperature are computed.

Second, the mixing temperature of the liquid melt at the

temporarily bath temperature with the new melted scrap

at melting point is computed. Due to the small time step,

the change of the bath temperature is numerically very

small and close to the numerical precision of MATLAB

R2014a which is nearly 1e-17. This leads to rounding errors

so that the proportion of the melted scrap leads to a

stabilisation around the bath temperature for very small

time step sizes.

In contrast to the Euler implementation, the two

variable time step implementations are showing nearly

the same results for the bath temperature calculation with

negligible differences and both are reaching the average

measured steel bath temperature. The temperature drop

after charging cold scrap as well as the temperature

increase at the end of the process by overheating is visible.

The differences within the computed step sizes between

the ode45 and ode15s mechanisms are not visible. The

ode15s uses small step sizes were necessary and increases

the step size were possible.

As described in section 2.2, the results between the

variable step size methods and the Euler method are not

directly comparable, as small adjustments in the new

MATLAB implementation were necessary. Nevertheless,

the simulation with the variable step solvers are reaching

the final bath temperature reliably whereas the simulation

with the Eulermethod reaches different bath temperatures

dependent on the chosen time step size. As a result, the

correct step size for the Euler method cannot be easily

selected in advance to the simulation and consequently, a

time step size optimisation for the model is necessary or

the time step can be optimised in a way to compensate

modelling inaccuracies.
4.3. Net Heat Flow to Scrap and Melting Phase

The heat flows to the liquidmelt phase and the scrap phase

are relevant to determine the melt rate and the temper-

ature change rate of the corresponding phases. For the

simulation with the Euler method, Figure 4 and Figure 5

show differences in the results for different time step sizes
6 steel research int. 86 (2015) No. 9999
as it is already noticeable in the results for the bath

temperature calculation. For the biggest step size of 0.25 s,

the time delay compared to the calculations with smaller

step sizes is visible, especially when melting the first two

baskets. At the end of the simulation, when melting the

third basket, the deviations between the different step sizes

are the biggest of up to 7 MW in the heat flow to the liquid

melt phase. For a decreasing time step size, the differences

between the simulation results for small time step sizes are

also decreasing. As a consequence, an increase in accuracy

can be assumed for small time steps, as the simulation

results are less dependent on the step size. But, as

described in section 4.2, the numerical precision of the

simulation software has to be considered as rounding

errors are possible.

The results for both variable time step implementations,

Runge-Kutta and NDF/BDF, are nearly the same with

negligible differences and are shown in Figure 6 and

Figure 7. The NDF/BDF mechanism provides the
� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Figure 6.Net heat flow to solid scrap for Runge--Kutta(ode45) and
NDF/BDF(ode15s).

Figure 7.Net heat flow to liquidmelt for Runge--Kutta(ode45) and
NDF/BDF(ode15s).
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simulation results much faster than the Runge-Kutta

method. As described in section 3.2, Runge-Kutta is

suggested as the most precise ODE solver in MATLAB.

While the NDF/BDF calculation method reaches the same

results it can be stated that the NDF/BDF method is fast

and precise enough for reliable online process simulation

with the applied EAF process model. A comparison of the

simulation results between the different Euler and BDF/

NDF implementations show similar curve shapes with

variances due to the implementation methods and

requirements.
5. Conclusion

In this paper the influence of three different ODE solvers

on model estimated process values is investigated

by means of calculation accuracy and computational

speed. Here, especially the average measured steel bath
� 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
temperature according to former model validation[6,7] and

the dependency on the chosen ODE solving method

respectively the chosen time step size for the calculation

are used to analyse the simulation accuracy. Using

mathematical models to enhance the EAF process has a

great potential and has been given considerable attention

in the past decade. However, in order to implement the

models in parallel to the actual EAF process and to

successfully estimate the process values, such as compo-

sitions and temperatures of the steel, slag and gas, two

main aspects should be taken into account. First, the

model needs to be designed and developed to an

appropriate level of complexity, including all major

mechanisms occurring during the steel recycling process

in the EAF. And second, the method used to evaluate the

model should satisfy the requirements of desired accuracy

and computational speed. The results of the study have

shown that different ODE solving methods can be used in

order to achieve the required accuracy of the calculations;

however, the computation times, which are needed for

proper estimation of the values, vary significantly. As has

been shown, the simplest method used, i.e. fixed step

Euler, shows strong dependence between the calculation

accuracy and step size; thus, making it useful for accurate

estimation only when small enough step sizes are used or

otherwise, the estimated values diverge from the actual

and the results become unusable. The consequence of

using small step sizes is a long simulation time, exceeding

the real time; thus, making the solver inapplicable in

online real-time applications. The other two methods

investigated, i.e. variable step Runge-Kutta and NDF/BDF,

performed better than the fixed step method; however,

large deviations in computational times occur as well.

Although the Runge-Kutta method evaluated the model

almost twice as fast as the Euler method with the smallest

step size, its results still cannot be applied in real-time,

since the time needed to obtain the results is approx-

imately two and a half times slower than real time. From

the estimation accuracy point of view, the NDF/BDF

method performed as well as the Runge-Kutta; but, the

time needed to evaluate the model was more than one

hundred times shorter, i.e. 60 s for approximately 2700 s of

simulated process time. For the specific case of the here

applied EAF model simulation, the NDF/BDF method

proved to be a fast, reliable and precise ODE solving

method and therefore the optimal choice with the best

possible accuracy to computational speed ratio. Often

when the models are used for online process control,

combinations of simulation and optimisation techniques

are used in order to obtain the best possible action or a

result. Knowing that optimisation is a highly time

consuming task, using a solving method with short

evaluation times is crucial in order to achieve real-time

processing running in parallel to the EAF process. To

conclude, the selection of the ODE solver has proved to be

one of the more important elements when using

mathematical models for calculation of the unmeasured
steel research int. 86 (2015) No. 9999 7
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FU
LL

PA
P
ER
 EAF process values. In spite of proper modelling approach

and a complex mathematical model, improper selection of

the solver can lead to inaccurate calculations; thus,making

the overall system unusable in real applications.
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